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Introduction

This paper describes the tools used in scaling proficiency scores from the second
International Assessment of Educational Progress (IAEP)1. The reader already acquainted with the
IAEP technical report volume two will find many similarities bewteen this paper and the technical

report. It's normal, both are authored by the the same person and describe the same work.
Moreover, the reader acquainted with NAEP technical report 17-R-20 will find that the same
technical tools were used in NAEP and IAEP. The important difference is that these tools were
used with much more heterogeneous populations than in any study done before: up to 36 different
populations assessed in 13 different languages. This heterogeneity rendered the attempt to put
proficiency scores on the same scale a delicate task wich must be undertaken carefully.

Since this paper inspired itself largely from the IAEP technical report volume two and that
this report was written in collaboration, I would like to thank E.G. Johnson, R.J. Mislevy, P.J.
Pashley, K.M. Sheehan and R.J. Zwick, all from Educational Testing Jervice, whose
collaboration and experience were very precious. I would also like to thank Nancy Mead, Archie
Lapointe and Jan Askew for their description of the IAEP populations that comes in the next
section.

The Second International Assessment of Educational Progress

The second IAEP study, conducted in 1991, was an international comparative study of the
mathematics and science skills of samples of 9- and 13-year-olds students from 20 countries. IAEP
was designed to collect and report data on what students know and can do, on the educational and
cultural factors associated with achievement, and on students' attitudes, backgrounds, and
classroom experiences.

1 The second International Assessment of Educational Progress was supported financially by the National
Science Foundation and the U.S. Department of Education's National Center for Education Statistics for the expenses
of overall coordination, sampling, data analysis, and reporting. The Carnegie Corporation provided additional funds
to cover the travel expenses of some of the participants who couldnot meet the financial burdens of traveling to the
project's coordination and training meetings held in Canada, England, France, Hong Kong, and the United States.
Decisions concerning the design and implementation of the project were made in collaboration with the
representatives of the countries involved in the survey. The National Academy of Sciences' Board on International
Comparative Studies in Education reviewed plans for IAEP at several stages of its development and made
suggestions to improve the technical quality of the study. Theboard is responsible for reviewing the soundness of
the technical procedures of international studies funded by federal agencies of the U.S. government.
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This project was a four part survey: a main assessment of 13-year-olds' performance in

mathematics and science; an assessment of 9-year-olds' performance in mathematics and science;

an experimental, performance-based assessment of 13-year-olds' ability to use equipment and

materials to solve mathematics and science problems; and a short probe of the geography skills and

knowledge of 13-year-olds. All countries participated in the main assessment of 13-year-olds;

participation in the other assessment components was optional.

Some countries drew samples from virtually all children in the appropriate age group;
others confined their assessments to specific geographic areas, language groups or grade levels.
The definition of populations often followed the structure of school systems, political divisions,

and cultural distinctions. For example, the sample in Israel focused on students in Hebrew-
speaking schools, wich share a common curriculum, language and tradition. All countries limited

their assessment to students that were in school, wich for some participants meant excluding
significant numbers of age-eligible children. In a few cases, a sizable proportion of the selected

schools or students did not participate in the assessment, and therefore results are subject to
possible nonresponse bias.

A list of the participants is provided below with a description of limitations of the
populations assessed. Unless noted, 90 percent or more of the age-eligible children in a population

are in school. For countries where more than 10 percent of the age-eligible children are out of
school a notation of in-school population appears after the country's name. In Brazil, two separate

samples were drawn, one each for the cities of Sio Paulo and Fortaleza. In Canada, nine out of the

10 provinces drew separate samples of 13-year-olds and four of these drew separate samples of
English speaking and French-speaking schools, for a total of 14 separate samples. Four Canadian
provinces six separate samples participated in the assessment of 9-year-olds.2 These distinct

Canadian samples coincide with the separate provincial education systems in Canada and reflect
their concern for the two language groups they serve. The IAEP project was asked to provide
separate results for the American state of Colorado, which opted to assess its 9- and 13-year-olds
students in mathematics, science, and geography.

2Taken together, the Canadian samples represent 94 percent of the 13-year-olds and 74 percent of the 9-year-olds in
Canada. An appropriately weightd subsample of responses was drawn from these samples for the calculation of the
statistics for Canada.
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Participants

Brazil

Canada

China

England

France

Hungary

Ireland

Israel

Jordan

Korea

Mozambique

Portugal

Scotland

Slovenia

Cities of Sio Paulo and Fortaleza, restricted grades, in-school population

Four provinces at age 9 and nine out of 10 provinces at age 13

20 out of 29 provinces and independant cities, restricted grades, in-school
population

All students, low participation at ages 9 and 13

All students

All students

All students

Hebrew-speaking schools

All students

All students

Cities of Maputo and Beira, in-school population, low participation

Restricted grades, in-school population at age 13

All students, low participation at age 9

All students

Soviet Union 14 out of 15 republics, Russian-speaking schools

Switzerland 15 out of 26 cantons

Taiwan All students

United States All students

Each participating country was responsible for carrying out all aspects of the project,
including sampling, survey administration, quality control, and data entry using standardized
procedures that were developed for the project. Several training manuals were developed for the
IAEP project. These comprehensive documents, discussed with participants during several
international training sessions, explained in detail each step of the assessment process.



Typically, a representative sample of 3300 students from 110 different schools was selected

from each population at each age level and half were assessed in mathematics and half iii science;. A

total of about 175,000 9 and 13-year-olds (those born in calendar years 1981 and 1977,
respectively) were tested in 13 different languages in march 1991.

Initial results of the second IAEP have been reported in Learning Mathematics and Learning

Science.3 Reports of the geography and performance assessments were issued in June and July

1992, respectively.4 Mathematics and science results for Colorado were reported in May 1992 and

georiraphy results, in August 1992.5 A technical report published in April 1992 describes the tools

that were used to obtain these results, which was considered to be the first stage of data analysis.6

In a second stage of data analysis, scales for mathematics and science proficiency were

obtained using what can be called a strong model-based psychometric strategy, item response

theory. Item response theory utilizes a family of models that employ latent vafables (i.e., variables

that cannot be observed) that correspond to the dimensions of what is knownas the "latent space".

As mentioned in the introduction, a technical report published in November 1992 gives a detailed

description of the tools used in this second stage.7

The present paper focus on a part of the second stage of data analysis: the work done

regarding the creation of a unique scale for all the participating populations, i.e. creating reference

populations, scaling methodology, linkage of 9 and 13-year-olds populations.

3Archie E. Lapointe, Nancy A. Mead, and Janice M. Askew. Learning Mathematics. Princeton, NJ; Educational
Testing Service, 1992.
Archie E. Lapointe, Nancy A. Mead, and Janice M. Askew. Learning Science. Princeton, NJ; Educational Testing

Service, 1992.
`}Stephen Lazer. Learning About the World. Princeton, NJ: Educational Testing Service, 1992.
Brian McLean Semple. Performance Assessment: An International Experiment. Edinburgh, Scotland: Scottish

Education Department, 1992.
5Ruth B. Ekstrom. Colorado: Meeting the Challenge in Mathematics and Science. Denver, CO: Colorado
Department of Education, 1992.
Ruth B. Ekstrom. Colorado: Meeting the Challenge in Geography. Dever, CO: Colorado Department of

Education, 1992.
6Adam Chu, et al. 1AEP Technical Report. Princeton, NJ: Educational Testing Service, 1992.
7Jean-Guy Blais, et al. 1AEP Technical Report: vol.2. Princeton, NJ: Educational Testing Service, 1992.
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Reference populations

The presence of so many different and heterogeneous populations (over 20 for 9-year-olds
and over 30 for 13-year-olds) makes the task of creating a common scale an interesting technical
and theoretical problem. How can we create a scale with which we can reasonably compare
different populations? This could be accomplished in different ways using different reference
populations. In this study, no single population was chosen to serve as the reference population.
Instead, all populations contributed to creating four combined reference populations, called
"superpopulations", one flr each age group by mathematics and science combination.

All superpopulations were initially formed by drawing random samples of 200 students
from each of the participating populations.8 At age 9, 2,800 examinees were retained for each of
the mathematics and science reference populations. At age 13, 4,000 and 3,800 examinees were
retained for mathematics and science populations, respectively. All the analyses were conducted
with these four data sets, but a number of analyses were repeated using the full populations. This
was the case for item parameter estimation and plausible values computation. Analyses of the
superpopulations were conducted without weights (i.e., each sampled student had a weight of
one). Analyses of the full populations were conducted using transformed weights that summed to
1650. This transformation was necessary because some of the procedures could be affected by the
number of examinees.

The analyses were based on the items retained after the first stage of the data analysis (see
the first technical report). Sixty-one items were retained for 9-year-old mathematics and 75 items,
for 13-year-old mathematics. Fifty-eight items were retained for 9-year-old science and 64 items,
for 13-year-old science. For some populations, there were additional items that had to be deleted
due to local problems in the translation of printed material. The maximum number of items
removed was three.

8Canadian provinces did not contribute directly to the reference populations. Instead 20C examinees were randomly
sampled from a population that had previously been labeled "Canada" (see the first IAEP technical report).
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Scaling methodology

The Scaling Model

The paragraphs that follow review the saing model employed in the analysis of the IAEP
data. The reader is referred to Mislevy (1991) and Mislevy, Beaton, Kaplan & Sheehan (1992) for
an introduction to plausible values methods and a comparison with standard psychometric
analyses, to Mislevy, Johnson & Muraki (1992) for additional information, and to Rubin (1987)
for the theoretical underpinnings of the approach.

The item response theory (IRT) scaling model used with IAEP is the 3-parameter logistic
(3PL) model (e.g., sce Lord, 1980). This model is from a family of "latent trait" models which
quantify examinees' tendencies to provide responses in a given direction (e.g., correct answers) ,
as a function of parameters that are not directly observed.

The fundamental equation of the 3PL is the probability that a person whose proficiency is
characterized by the unobservable variable 0 will respond correctly to item j:

gP(Xj = 1 i 0, aj, cj) = cj + (1 - cj) epa

1 + elpa

bi)

ite

Pj(0)

where: xj is the response to item j, 1 if correct and 0 if not ;

aj, aj > 0, is the slope parameter of item j, characterizing its sensitivity to
proficiency ;

bj is the threshold parameter j, characterizing its difficulty ;

cj , where 0 < cj < 1, is the lower asymptote parameter of item j, reflecting the
chances of a correct response from students of very low proficiency.

In IAEP analyses, c parameters were estimated for multiple-choice items, but were fixed at zero for
constructed response items.
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Under the usual IRT assumption of local independence, the probability of a vector x = (xi,
..., x0) of responses to n items is simply the product of terms based on the fundamental equation
of the 3PL:

P(x 10, a, b, e) = fl [podx, [i pod].
J.,

After x has been observed, this equation can be considered a likelihood function, andprovides a basis for inference about 6 or about item parameters. In IAEP, estimates of item
parameters were obtained via a marginal maximum likelihood estimation procedure (see Bock &Aitkin, 1981) as implemented in Mislevy and Bock's (1982) BILOG computer program.

Overview of Plausible Values Methodology

A detailed development of plausible values methodology is given in Mislevy (1991). Along
with theoretical justifications Mislevy's paper presents some secondary analyses and numerical
examples. Plausible values were developed as a means of obtaining consistent estimates of selected
population features, and approximations of others that are no worse than those that would beobtained using standard IRT procedures. The following paragraphs give a brief overview of the
approach.

Let y represent the responses of all sampled examinees to background and attitudequestions. If IRT 0 values were available for all sampled examinees, it would be possible to
compute a statistic t(0, y) -- such as a subpopulation sample mean, a sample percentile point, or asample variance -- to estimate a corresponding population quantity T. A function U(0, y) -- e.g.,
a jackknife. estimate -- would be used to gauge sampling uncertainty. Because the 3PL is a latentvariable model, however, 0 values are not observed even for sampled students. If enough
responses are solicited from each student to provide a fairly precise estimate 0 of their 0 values,
values of t(0, y) and U(0, y) are reported as approximations of corresponding t(0, y) and U(0, y)
values.

Following Rubin (1987), we can think of 0 as "missing data" and approximate
t(0, y) by its expectation given (x, y), the data that were observed, as follows:

-8-
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t* (x, y) = E[ t(0, y) 1 x, y )

= 140, y) p(0 I x, y) d0

It is possible to approximate t* by using random draws from the conditional distribution
p(0 I xi, yi) of each sampled student i. These values are referred to as imputations in the sampling
literature, and as "plausible values" in REP. The value of 0 for any respondent that would enter
in the computation of t is thus replaced by a randomly selected value from the conditional
distribution for 0 given his or her responses to cognitive items (xi) and background items (yi).
Rubin (1988) proposes this process be carried out several times -- multiple imputations -- so that
the uncertainty associated with imputation can be quantified. The average of the results of K
estimates of t, each computed from a different set of plausible values, is a Monte Carlo
approximation of the above integral; the variance among them, denoted by B, reflects uncertainty
due to not observing 0, and must be added to the estimated expectation of U(0, y), which reflects
uncertainty due to testing only a sample of students from the population.

Plausible values are not test scores for individuals in the usual sense. They are offered only
as intermediary computations for calculating integrals of the form presented above in order to
estimate population characteristics, even though they are biased estimates of the proficiencies of the
individuals with whom they are associated.

Computing Plausible Values in IRT-based Scales

Plausible values for each respondent i are drawn from the conditional distribution p(01
yi). This section describes how, in IRT-based scales, these conditional distributions are
characterized and how the draws are taken.

Using conditional independence we have:

10 (0 I xi, yi) cc P(xI 0) 1)(0 I yi)

where P(xi 1 0 ) is the likelihood function for 0 induced by observing xi (treating item parameter
estimates as known true values) and p(0 I yi) is the distribution of 0 given the observed value yi of
background responses.

-9-
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In the analysis of IAEP data, a normal (Gaussian) form was assumed for p(0 I yi),
with a common dispersion and with a mean given by a main-effects model for selected elements of
the complete vector of background variables. The background variables included will be referred to
as the conditioning varigiles9, and will be denoted ye. The following model was fit for each
subject group for each age (i.e., mathematics and science for 9- and 13-year-olds):

0 = yc + e ,

where e is normally distributed with mean 0 and dispersion E; and r and E are the parameters to be
estimated. Since the subject areas in IAEP were considered to have just one scale, F is a vector
and E is a scalar. If we had decided to use subscales, then r would have been a matrix and E a
covariance matrix. Like item parameter estimates, these estimates of conditional distributions were
treated as known true values in subsequentsteps of the analysis. Maximum likelihood estimates of
F and E were obtained with Sheehan's (1985) M-Group computer program, using a variant of the
EM solution described in Mislevy (1985).

The conditional distribution, p(0 I yi), has been assumed normal, with mean 14 = r yf and
variance E; if the likelihood, P(xi I 0), is approximated by another normal distribution, with mean
Rt. and variance Ii , then the posterior p(0 I xi, yi) is also normal with variance:

213 = + (1h4)-'

and mean: Oi = z-1 + zb (15-'

In the IAEP analysis, a normal approximation for P(xj I 0) was accomplished for a given
scale by the steps described below. These computations were carried out in the scale determined by
parameters estimates from different runs of BILOG (Mislevy & Bock, 1982).

1- Lay out a grid of Q equally spaced points from -5 to +5, a range that should cover the
region of the scale for each population involved. The number of Q values varies from 20 to
40, depending on the scale being used; smaller number of values should suffice for scales
with few items given to each respondent, while larger number of values are required for
scales with many items (such as in IAEP).

9The conditioning variables used in IAEP analyses are presented in the second technical report, appendix C. The waythey were included in the analysis is described in a further section.

-10-
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2- At each point Xq, compute the likelihood L(xi f 0 = Xq).

3- To improve the normal approximation in those cases in which the likelihoods are not
roughly symmetric in the range of interest -- as when all of an examinee's answers are
correct -- multiply the values from step 2 by the mild smoothing function

exp(Xq + 5)
S(Xq) [1 + exp(Xq + 5)] [1 + exp(Xq 5)]

This is equivalent to augmenting each examinee's response vector with responses to two
fictitious items, one extraordinarily easy item that everyone gets right and one
extraordinarily difficult item that everyone gets wrong. This exce.dient improves the normal
approximation for examinees with flat or degenerate likelihoods in the range where their
conditional distributions lie, but has negligible effects for examinees with even modestly
well-determined symmetric likelihoods.

4- Compute the mean and standard deviation of 0 using the weights S(Xq) from step 3

At this stage, then, the likelihood created by a respondent's answers to the items in a given
scale is approximated by a normal distribution. This normalized-likelihood normal posterior
approximation is then employed in both the estimation of r and I and in the generation of plausible
values. From the final estimates of r and I , an examinee's posterior distribution is obtained from
the normal approximation using the four-step procedure outlined above and a plausible value is
drawn at random from this univariate normal distribution.

Even though we do not observe the 0 value of examinee i, we do observe variables that are
related to it: xi, the examinee's answers to the cognitive items, and yi, the respondents answers to
demographic and background variables. Suppose we wish to draw inferences about a number
T(0, Y) that could be calculated explicitly if the 0 and y values of each member of the population
were known. Suppose further that if 0 values were observable, we would be able to estimate T
from a sample of N pairs of 0 and y values by the statistic t(0, y) [where t(0, y) (0i, yi,...,ON,
yN)], and that we could estimate the variance in t around T due to sampling respondents by the
function U(0, y). Given that observations consist of (xi, yi) rather than (0i, yi), we can
approximate t by its expected value conditional on (x, y), or (as previously seen):



t* (x, y) = E[ t(0, y) I x, y

= t(0, y) p(0 ) x; y) dO

It is possible to approximate t* with random draws from the conditional distributions p(Oi I

xi, yi), which are obtained for all examinees by the method describe above. Let Om be the mth

such vector of the "plausible values," consisting of a value for the latent variable of each
examinee. This vector is a plausible representation of what the true 0 vector might have been, had

we been able to observe it. The following steps describe how an estimate of a scalar statistic t(0, y)

and its sampling variance can be obtained from M (> 1) such sets of plausible values.10

1- Using each set of plausible values Om in turn, evaluate t as if the plausible values were

true values of 0. Denote the results tm , for m = 1, ...,M.

2- Using a variance estimation procedure, compute the estimated sampling variance of tm

denoting the result Um.

3- The final estimate of t is:

MA

t* =
M=1

4 Compute the average sampling variance over the M sets of plausible values, to

approximate uncertainty due to sampling respondents:

M T T
Us = "

m =1

5- Compute the variance among the M estimates tm, to approximate uncertainty due to not

observing 0 values from respondents:

NI A

BM = ts)2
M-1

m=1

10Five sets of plausible values were used in each IAEP analysis and are provided on the IAEP public-use data tapes
for secondary analysis.



6- The final estimate of the variance of e is the sum of two components:

V=U*+(1 +M-1)Bm .

The first term, U* is related to the sampling variance and, in IAEP, it is estimated through a
resampling procedure call the jackknife. Briefly, we can say that this procedure computes a
statistic with the full data set and computes the same statistic a certain number of times, taking into
account the sampling plan, deleting each time some of the data and replacing them with contiguous
data (thus creating so-called pseudo data sets). The standard error is then estimated using the sum
of the squared differences between estimates with the full data set and estimates with the pseudo
data sets. The second term, (1 + M-1) BM, is related to measurement error. It is the estimate of the
uncertainty due to not observing 0. It is computed as the sum of the squared differences between
the mean using each plausible value and the mean of the plausible values means. These two
components are combined as shown above to form a more realistic standard error estimate.

Estimating variability requires computing a statistic 165 times, including 33 computer runs
to obtain an estimate and a variance estimate from each of the five sets of plausible values used in
IAEP analyses. Because the cost of the full procedure was prohibitive, an approximate procedure
was used to produce reasonable estimates at lower costs. We estimated t on each pseudo-data sets
(in order to estimate variability due to tl latency of proficiency) but computed its jackknife
variance on only one pseudo data set to estimate sampling variability.

The invariance principle of IRT

Item response theory comes from the work of Ferguson (1942), Lawley (1943), Lord
(1952) and Rasch (1960). This modelization proposal rests on the hypothesis that there exists a
relation between the probability of obtaining the observed result for a given item and the non-
observable ability (one or many) aimed at in the measurement process devised. It is inspired by
statistical regression and by factor analysis. It supposes the existence of non-observable elements,
traits, abilities, factors, influencing performance and observed results.

Modelizing in the statistical regression framework, as we find it in I.R.T., gives a
theoretical property to the mathematical model's parameter: the invariance property. Under some
conditions, estimates of items' parameters are independent of the group of examinees with which

-13-
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the measurement is done, and examinees' ability is independent of the items included in the
measurement process (see Blais & Ajar, 1992; Blais & Ajar, 1993).

The invariance property is almost mythical because its empirical demonstration is
remarkebly lacking in published studies, rendering it suspect on that account (Wood, 1976).
There's been a lot of confusion about it in I.R.T.'s applications and Wood (1976) said that it was
one of the grayest concept in general test theory. In some presentation of the invariance property,

it is suggested that the model guarantees invariant estimation, that invariant estimations can be
obtained with any group of examinees or items without empirical investigations. As if I.R.T.

model spared us from worrying about anything any more. Fortunately of course, reality is
somewhat more complex. Most of the time there's far to go before counting the chickens.

Before getting into conditions for the invariance property to hold and into discussion of

elements that could tamper it, we must place things in a general context. To do so, we will expose

the idea of statistical regression as we find it in some statistics textbooks (for example, Cramer
1946, p. 270-272), the special case of linear regression and how it can be formulated in the
framework of I.R.T.

Let X and Y be two continuous random variables and f(x,y) their joint probability function.

If we think of Y as a dependent variable and of X as an independent variable, then we can write
f(y1x), the probability function of y given x.

For a given value of X, say x, the Y variable can take many values y. A possible
representative of these values could be the expected mean of Y given the value x taken by X:
E(YIX=x) = pyix.

When x varies, the point [x,E(YIX=x)] describes a curve in a two-dimensional space. A

curve like this is called a regression curve, it is said to represent the regression of Y on X.

The regression of Y on X is independent of the x's distribution, it is invariant from one
group of x values to any other one.

If we suppose a linear relationship between Y and X, we can represent it by the equation Y
= aX + b + e, where e is an error variable. If Y and e are random variables and E(e)=0, then
E(YIX) = aX + b, i.e. the regression of Y on X is given by aX + b.

-14-
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When for estimated values of a and b, the hypothesis of a linear relationship can be
confirmed., the established relation will be the same whatever values of X are considered. In other
words the invariance property will hold for the a and b parameters.

The parallel with I.RT.'s modelization can be illustrated with the case where the notation is
dichotomous.

Let the result (0 or 1) to a given item j be the variable Uj. Pj(q) can be the probability of a
correct result, noted 1, given an ability q: Pj(q) = P(Uj=11q). And Qi(q) the probability of an
incorrect result, noted 0, given an ability q: Qj(q) = P(Uj=0Iq) = 1- P(Uj=1Iq).

Let's suppose that the probability function of Uj is of the Bemouilli type, then:

P.(0), u = 1
fj(Uj) =

WO), uj = 0

The regression of the observed result, for item j, on the ability q is given by:

E(Ujlq) = [ Pj(q) x 1 + [ Qi(q) x 0 ]

= Pj(q)

We called the regression of the obsery ,d result Uj, for item j, on the ability q, the
characteristic curve of item j: I.C.C. The characteristic curve is invariant for any distribution of
the ability variable q. If Pj(q) is in the form of a two-parameter logistic model, i.e. one parameter
q for the examinees and two parameters (a, b) for the items, since the I.C.C. is invariant the
parameters are, theoretically, also invariant.

For the property to hold empirically, the modelization must meet some conditions.
Certainly, an important one is that there must be some appropriateness between the data and the
model. Like for any regression model, the invariance property holds only if we can demonstrate
that the model fits the data reasonably well. The main difficulty resides in defining what is meant
by reasonably well.

From the modelization point of view, goodness of fit is not the only concern that must get
the practitioner's attention, even if it is an important point. At the initial calibration of items, the
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road that leads to parameters' estimation for our model, we must have some thought about the
desired level of generalization we are aiming at for our results. In direct link with our measurement

objectives we must have considerations for the way we sample the examinees. Not that we must
use a specific probabilistic sampling plan -we are in the regression framework- but the sample must

be conveniently heterogeneous (Hambleton and Swaminathan, 1985, p. 13). The task we have to
tangle with is to give a practical meaning to the word conveniently.

In a new measurement situation, with items previously calibrated, invariance will hold only

if the new examinees being tested have similar characteristics as those in the group that was use
for the initial calibration of items (Lord & Novick, 1968 p. 360). We must then take into
consideration the heterogeneity wanted in the initial calibration if we want to collect useful
information that will help us explore the promise of invariance with future examinees' samples.

When there is an interaction between a group of examinees and some given items, so that
items have a different meaning for different groups (a sort of bias), the invariance property will not
hold any more.

Scaling

First, let us review the entities we were dealing with in this scaling analysis. As described
in a previous section, three elements contribute to a population's mean proficiency estimate:
supposedly known item parameters, known answers to background items, and known answers to
cognitive items. Thus, for each analysis, there were three data sets to be considered for each
subject area and age group.

The information that is known can be used directly. The content of the cognitive items is
documented in the first IAEP results report published in February 1992. All the cognitive items
included in the percents correct analyses in the first stage of data analysis were used for the IRT
analyses.

The background. variables used for computing plausible values were not used directly.
Since we are dealing almost exclusively with qualitative variables, and since plausible values
methodology can be seen as a kind of regression analysis, all background variables were
transformed into "dummy" variables. These variables took the form of a series of orthogonal
comparisons which described the various categories of each background variable. These variables
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Figures 7 and 8 show fitted regression lines of the two proficiency scores. (Individual

population proficiency scores were regressed against the reference population proficiency scores.)

The graphics presented at the top and bottom of Figure 7 are for mathematics 9- and 13-year-olds,

respectively. The graphics presented at the top and bottom of Figure 8 are for science 9- and 13-

year -olds, respectively.

Insert figures 7 and 8 about here

These last figures indicate that the proficiency distributions estimated from the reference

populations cannot be considered as having the same mean and standard deviation as the
distributions estimated from the individual populations. The proficiency estimates are highly
related, with correlations of over 0.98, but the midpoint and scale of the proficiency distributions

are different. The midpoint and scale of a proficiency distribution is arbitrary. To compare the

proficiency distribution glirectly from population to population, they must be put onto the same
metric. This is accomplished by equating.

The scales that result from separate IRT scalings are not typically comparable, even if the

same set of items are used in each of the scalings. The origin and scale units of the provisional

scale for each of the individual population's scaling and for the reference population's scaling were

established by setting the ability distribution of each of the respective calibration samples to a mean

of zero and a standard deviation of one. Because all participating populations were used in the

reference population's item calibrations, the origin and scale unit for the reference populations were
based on the sum of the individual populations' ability distributions. In contrast, the origin and
scale unit of the individual populations' scales were based on an ability distribution of each single

population. Clearly, 'without a transformation, the metrics for the individual populations are not
comparable to one other or to the metrics of the reference populations. Consequently, additional

procedures were employed to ensure all scores were reported on the same metric.

The next step then was to put the item parameters estimates coming from the individual

populations and those coming from the reference population for a given subject area and age group

on the same metric. This was done by equating the item parameters estimated from the individual

populations to those estimated from the reference populations (see Section for documentation of the
equating procedures). After the equating was completed, proficiency scores were recalculated
using equated estimated item parameters and compared to proficiency scores computed from item
parameters estimated from the reference populations.



Figures 9 and 10 illustrate what happened to previous regression lines when equated item

parameters estimates were used instead of those that were not equated. The lines are much more

homogeneous and, except for one population, 13-year-old mathematics, we could say with

confidence that equated item parameters estimates and those coining from the reference populations

were on the same metric. Moreover, the rank orders of the mean proficiency scores for
populations based on the equated ICCs and those based on the reference population ICCs are the

same (if standard errors are taken into account). These results indicate that no information has

been lost as a result of using one set of item parameter estimates over another. We, therefore,

decided, to use the overall estimates based on the reference populations and five plausible values

were computed for each examinee from each population using Sheehan's M-Group program (the

mainframe version).

Insert figures 9 and 10 about here

To assess the relationship between proficiency scores and previously presented percent

correct scores, correlations were computed between each plausible value and mean percent correct

score for each population. The results are presented in Tables 3 to 6. As we can see from these
tables, the correlation between the mean percent correct and the mean of the plausible values
(column labeled CORR) and each individual plausible value (columns labeled P1 to P5) were quite

high. We can also observe that the rank order based on mean percent correct scores (column
labeled %) corresponds to rank order based on mean proficiency scores (column labeled PROF).
The mean proficiency scores are presented on a scale with a mean of 500 and a standard deviation

of 100. The next paragraphs will describe the transformation applied to the original proficiency
scale [-3.00, 3.00]).

Insert tables 3 to 6 about here

To be able to perform a linear transformation of an existing scale, one has to know what are
its initial mean and standard deviation and the targeted mean and standard deviation. For IAEP, the

target mean and standard deviation were fixed at 500 and 100 respectively. These values were
chosen mainly for reporting convenience.

The initial mean and standard deviation had to be calculated from the existing data. In
creating a common scale using all the participants we decided that the initial mean and standard

deviation would be calculated using the weights of each examinee in each populations for a subject
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area. After equating the results of the 9- and 13-year-old populations for a given subject area

(mathematics or science)11, all the examinees in these two age-groups were put together and initial

values were calculated. The following summarizes how this was done.

Let )70, and S20, stand for the mean and standard deviation of the initial scale and 342 and

S202 stand for the mean and standard deviation of the targeted scale, respectively. Then 01, a

plausible value on the initial scale, is transformed to 02 , a plausible value on the transformed

scale, by calculating:

02 =
o

(61- 34)1 + 500

Finally, the mean proficiency score was calculated for each population. Tables 8 and 9 present
some of the results.

Column one is a population ID. (The asterisk beside the standard error indicates a 9-year-

old population.) Column two gives the mean proficiency score for each population. Column three

gives the standard error of the mean proficiency score. Remember that this standard error takes into

account sampling and imprecision in measurement. The next eleven columns gives information on
the distribution of scores. They provide the first, tenth, twentieth, thirtieth, fortieth, fiftieth,

sixtieth, seventieth, eightieth, ninetieth, hundredth percentiles of the distribution, respectively.for

each population.

Insert tables 8 and 9 about here

Linking 9- and 13- year -olds

A small set of common items were included in the 9- and 13-year-olds assessments in each
subject area. (Fourteen of these common items in each subject were retained after the first stage of

data analysis.) This design element provided the possibility of linking 9- and 13-year-olds results
into a single scale within each subject area (i.e., mathematics and science).

11s part of the analysis is documented in the following section.
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The item parameters of the common items were estimated independently using the 9-year-

old reference population and 13-year-old reference population. These item parameter estimates

were different because the scales defined by each independent calibration of the items were

different. In order to merge the two age group proficiency scores, we had to make sure they were

expressed on the same scale. There are a number of methods for transforming item parameter

estimates from one scale to another scale (see Stocking & Lord, 1983).

Two procedures for transforming IRT results to a common scale are common items
equating and equivalent populations equating. The common items equating procedure is used to

equate two scales that contain a set of common items that were administered to independent

samples drawn from different populations. This was the case for the 9- and 13-year-old IAEP
populations.

The procedure that was used to estimate the transfo.-mation for linking the two age groups

was the Stocking-Lord procedure (Stocking & Lord, 1983) a. implemented in the TBLT computer

program (Stocking, 1986).

The input data for the Stocking-Lord procedure consists of two sets of estimated item

parameters, one set expressed on a target scale and one set expressed on a provisional scale. In the

IAEP study the 13-year-old scale was chosen as the target scale and the 9-year-old scale as the
provisional scale. The output of the Stocking-Lord procedure are the parameter estimates, denoted

here by A and B, based on a linear transformation that describes the relationship between the IRT
item parameter estimates expressed on the provisional scale and those expressed on the target scale.
That is,

-a.1A 1 aP

bJ = A b? +B
J

C = CP
J j

where (ay, br, cj') and (aj, bj, cj) for j = 1,...,n are IRT parameter estimates obtained for the

common items expressed on the provisional and target scales, respectively. Note that the lower

asymptote parameters cy are unaffected by the transformation.



The parameters of the linear transformation, A and B, are found by minimizing the squared

differenCe between estimated true scores (expected numbers correct on the n common items) at N

preselected proficiency values, 8 = [01,...,ON]. The function that is minimized is :

f(A, L) = 1 / N ft' (1, 0, 0) - tP(A, B, 0) )
i=t

where tT(1, 0, 0i) is the estimated true score associated with the proficiency level 01, calculated

from the item parameters expressed on the target scale, and tP(A, B, 0i) is the estimated true score

associated with the proficiency level Oi calculated from the item parameters that were originally

estimated on the provisional scale and then re-expressed on the target scale. That is,

tP(A, B, 0) =
r (1

1=1 (1 + exp [ -1.7(A-lar)(0; - (AbiP + B))])

where ar and bi; are the estimated discrimination and difficulty parameters for item j, expressed on

the provisional scale. The values 0 = [01,...,0N] are typical selected to span that region of the
target scale which is expected to be the most dense.

The transformations were obtained using Stocking (1986) TBLT program. The equated
item parameters estimates are presented in Tables 9 to 14.

Insert tables 9 to 14 about here

The transformation used for putting 9-year-olds (b') item parameter estimates on to the 13-

year -olds scale, for mathematics was

TARGET = (1.076767 x PROVISIONAL) + (-1.323902),

and for science,

TARGET = (1.116443 x PROVISIONAL) + (-1.350289).

Of course, obtaining such equations does not mean that estimates are identical. The quality
of the linking procedure must still be checked.

For mathematics, we can see by looking at Tables 9 to 11 and Figures 11 to 13 (where 9-
year -old estimates are on the horizontal axis and 13-year-olds are on the vertical axis) that the main
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problem lies with the difficulty parameter of one item, item 30.. In Figure 12, this item is the point
at the extreme right (0.43, -0.62). Otherwise, even if values do not fall exactly on a straight line,
we can consider that parameters at each age are similar. (Remember that the c values were not

equated.) Correlation between estimates of the a and b parameters were 0.67 and 0.80,
respectively.

Insert figures 11 to 13 about here

For science, we can see by looking at Tables 12 to 14 and Figures 14 to 16 there are two
items which present a problem, item 26 and item 27. These are the same items that are singled in
the next chapter on the item anchoring procedure. Correlation between estimates of a and b
parameters were 0.67 and 0.73, respectively.

Insert figures 14 to 16 about here

What should be done with these items? Ideally they should be removed and the equating
redone. However, the number of common items in the IAEP assessment were limited, and the
performance of the linking procedure is at least partly affected by the number of items included in
the linking. This is because the procedure is sensitive to uncertainty due to model misfit, which
becomes more severe as the number of linking items decreases (Sheehan, 1988). In a sense, as the
number of items increases, the effect of a few peculiar items should decrease. Because we felt that

mean proficiency score estimates would be robust to the presence a small number of non "ideal"
items in the equating procedure and we wanted to keep as many items as possible (content
coverage being important), the decision made was to keep all the items and go ahead with the
linking of the 9- and 13-year-olds scales, keeping in mind that there is always some uncertainty
due to any linking procedures (as well illustrated by Sheehan, 1988).

Conclusion

Results show that even if on an item by item basis the equating gives results that are not
"ideal", when all the items are taken into account (i.e. the test format) the students proficiency
scores estimated with both sets of item parameters estimate (from the reference populations and
from the "equated" individual populations) can be considered to be on the same scale. Moreover,
the rank orders of the mean proficiency scores for populations based on the equated ICCs and
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those based on the reference population ICCs are the same (if standard errors are taken into
account). These results indicate that no information has been lost as result of using one set of item
parameter estimates over another.

Implications for applied research and educational data analysis could be important. When

working with multiple heterogeneous populations, one can choose to work with a reference
population that is a mixture of individual populations. In doing so, there should be no loss of
information if one is working on an aggregated measures basis (test scores or population' mean
test scores). However, one has to be careful when working with individual items (like in
computerized adaptive testing), since there could be some important discrepancies in between
individual population equated item parameters estimate.
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Tables and figures



Table 1 Mathematics, age 9, items' parameters estimates and standard
errors .

SLOPE SE 'IRESHOLD SE GUESSING SEITEM ID- ITEM
LABEL

1-1M1 NUM-PK 1.15358 0.06 -1.17706 0.0702 0.24847 0.03633
2-1M1 MEA 0.68846 0.03551 -1.61817 0.12152 0.21652 0.0467
3-1M1 NUM-CU 0.83867 0.04437 -0.85243 0.08628 0.22833 0.03664
4 -1M1 NUM-CU 0.66089 0.063 0.08477 0.13 0.43187 0.03356
5-1M1 ALG -PS 0.5118 0.03437 -2.01419 0.20448 0.27147 0.05706
6-1M1 MEA-CU 0.46526 0.02995 -1.67893 0.19603 0.23938 0.05257
7-1M1 DAT-PK 0.91269 0.04814 -0.135 0.05778 0.20379 0.02479
8-1M1 NUM-PK 0.66594 0.02626 -1.64992 0.05606 0 0
9-1M1 MEA-CU 0.70783 0.02592 -1.6543 0.05465 0 0
10-1M1 GEO-CU 0.71741 0.02396 -0.74371 0.0298 0 0
11-1M1 ALG-CU 0.79017 0.02491 -0.40392 0.02356 0 0
12-1M1 NUM-PK 1.1168 0.03319 -0.37642 0.0185 0 0
13-1M1 NUM-PK 0.70757 0.02339 -0.17404 0.02433 0 0
14-1M1 MEA-PK 1.28359 0.069 0.31246 0.03136 0.19139 0.01543
15-1M1 NUM-PS 1.0947 0.06058 -0.16201 0.05055 .0.22247 0.02377
16-1M1 NUM-CU 1.62095 0.08478 0.27242 0.02615 0.20983 0.01395
1-12M2A NUM-PS 0.828 0.04876 -0.03503 0.06767 0.23484 0.02624
2-12M2A NUM-PS 0.75785 0.04488 -0.45259 0.09108 0.25686 0.03387
3-12M2A NUM-PS 0.8293 0.06614 0.78449 0.05577 0.27117 0.01938
4-12M2A ALG-PS 0.92789 0.07725 0.99986 0.04764 0.28042 0.01586
5-12M2A NUM-PK 0.77349 0.05877 0.52315 0.06707 0.27469 0.02324
6-12M2A DAT-PS 0.97326 0.04868 -0.00624 0.04653 0.16562 0.02114
7-12M2A NUM-CU 0.94739 0.05467 0.3143 0.0455 0.19152 0.01931
8-12M2A NUM-PS 1.25314 0.10434 1.07732 0.03749 0.30381 0.01204
9-12M2A DAT-CU 0.85102 0.05872 0.80681 0.04489 0.17341 0.01728
10-12M2A NUM-PK 1.03049 0.03007 0.44814 0.01837 0 0
11-12M2A NUM-CU 0.94808 0.12887 1.63286 0.07364 0.32057 0.01369
12-12M2A NUM-CU 1.23887 0.10654 1.17726 0.03823 0.27199 0.01191
13-12M2A ALG-PS 1.03295 0.06407 0.78132 0.03628 0.1609 0.01424
14-12M2A GEO-CU 1.03056 0.0816 1.01171 0.04263 0.23691 0.01471
1-1M3 GEO-CU 0.58991 0.03844 -2.339 0.18846 0.26535 0.05722
2-1 M3 DAT-CU 0.96807 0.0615 -1.03282 0.10084 0.38174 0.04066
3-1M3 DAT-CU 1.29945 0.07238 -0.61351 0.05688 0.32353 0.02812
4 -1M3 NUM-PK 1.49841 0.06371 -0.73239 0.03849 0.16936 0.02369
5-1M3 MEA-PK 0.57301 0.039 -0.76622 0.14918 0.27294 0.04525
6-1M3 MEA-CU 0.73064 0.05218 0.01566 0.09242 0.31589 0.03014
7-1M3 NUM-PK 0.81144 0.04285 -0.34818 0.07109 0.19901 0.02894
8-1M3 NUM-CU 0.67596 0.02275 -0.46493 0.02765 0 0
9-1M3 NUM-PK 0.84861 0.02726 -0.56019 0.02591 0 0
11-1M3 GEO-PS 0.84981 0.02653 0.59891 0.0225 0 0
12 -1M3 ALG-PS 1.00732 0.08466 0.32661 0-.06365 0.41211 0.02206
13-1M3 NUM-CU 1.22822 0.07545 0.29677 0.03945 0.26364 0.01799
14-1M3 NUM-PK 0.892 0.04846 -0.40045 0.07199 0.22669 0.0309
15-1M3 NUM-CU 0.98494 0.05529 0.33756 0.04311 0.16772 0.01918
16-1M3 NUM-PK 1.5501 0.08653 \\ 0.40753 0.02678 0.2001 0.01371
1-1M4 GEO-CU 0.93718 0.05464 -1.50959 0.10792 0.32588 0.04636
2-1M4 NUM-PK 1.14108 0.05813 -0.7455 0.05883 0.21197 0.03083
3-1 M4 NUM-PK 1.22622 0.05303 0.62611 0.04716 0.19931 0.02537
4-1 M4 DAR-PK 0.9241 0.05353 -1.07375 0.09911 0.35635 0.04004
5 -1M4 DAT-PS 0.98672 0.05838 0.37687 0.04241 0.16773 0.0187
6-1M4 DAT-PK 1.16635 0.0583 -0.44396 0.05115 0.23954 0.02506
7-1M4 MEA -PK 0.62855 0.04601 -0.37126 0.12934 0.30776 0.03942
8-1 M4 NUM-PK 1.11387 0.05929 -0.07947 0.04527 0.22027 0.02104
9-1 M4 ALG-CU 0.34832 0.01831 -1.73093 0.09605 0 0
10-1M4 NUM-PK 0.60655 0.0216 -0.76071 0.03448 0 0
11-1M4 NUM-PS 0.90445 0.02645 -0.1567 0.0194 0 0
12-1M4 NUM-CU 1.04991 0.03073 0.50936 0.01824 0 0
13-1M4 MEA-PK 0.86948 0.02556 0.45126 0.02103 0 0
14-1M4 MEA-CU 0.91701 0.02727 0.24468 0.01881 0 0
15-1M4 NUM-PS 1.34951 0.07053 0.16408 0.03212 0.20245 0.01628
'16-1M4 GEO-CU 0.95731 0.06168 0.52416 0.04504 0.20675 0.01847



Table 2 Mathematics, age 13, items' parameters estimates and
standard errors

ITEM ID ITEM LABEL. SLOPE SE TRESHOLD SE GUESSING SE
1 -2M1 GEO-CU 0.53152 _0.02701 -1.03639 0.14854 0.21089 0.04779
2-2M1 ALG-PK 1.52416 0.05035 -0.31848 0.02463 0:16824 0.01364
3-2M1 NUM-CU 0.77062 -0.03108 -0.78654 0.07639 0.17051 0.03288
4-2M1 MEA-CU 0.66237 0.03307 -0.16034 0.07958 0.19393 0.02778
5-2M1 NUM-CU 0.59752 0.03487 - 0.36151 0.11255 0.22227 0.03656
6-2M1 NUM-PS 0.70937 0.03162 -0.96756 0.09884 0.18841 0.04108
7-2M1 MUM -PS 1.17333 0.05522 0.69702 0.02545 0.22404 0.0102
8-2M1 NUM-CU 1.39448 0.08895 1.17337 0.02702 0.31621 0.00799
9-2M1 MEA-PS 1.2339 0.04137 0.43553 0.01877 0.07072 0.00841
10-2M1 DAT-PK 0.54627 0.01585 -1.15737 0.03524 0 0
11-2M1 DAT-PK 0.96275 0.02022 -0.14431 0.01472 0 0
12-2M1 DAT-PK 0.8056 0.01767 -0.30767 0.01771 0 0
13-2M1 GEO-CU 1.06263 0.02194 -0.09168 0.01364 0 0
14-2M1 ALG-PS 1191098 0.02172 0.84579 0.01836 0 0
15-2M1 ALG-PK 1.60427 0.05707 -0.33532 0.02445 0.15037 0.01459
16-2M1 DAT-P1C 1.26213 0.04681 0.06054 0.02739 0.16437 0.01374
17-2M1 NUM-PK 1.18523 0.05278 0.09199 0.03303 0.19922 0.01605
18-2M1 MEA-PS 1.47208 0.06709 0.50954 0.02251 0.21778 0.01072
19-2M1 MES-PK 1.80225 0.09874 1.13716 0.01923 0.19567 0.00683
1-12M2B NUM-PS 0.73187 0.02993 -1.44386 0.10678 0.20564 0.0476
2-12M2B MUM -PS 0.83575 0.03072 -1.66592 0.08896 0.18289 0.04655
3-12M2B MUM -PS 0.66709 0.0432 -0.14352 0.10024 0.3104 0.03102
4-12M2B ALG-PS 0.59672 0.03163 -0.41038 0.10368 0.18696 0.03493
5-12M2B NUM-PK 0.56451 0.03162 -0.56463 0.12584 0.20861 0.04049
6-12M2B DAT-PS 0.67999 0.02609 -1.45374 0.10456 0.18137 0.04494
7-12M2B NUM-CU 1.03708 0.05077 -0.58454 0.061 0.30164 0.02651
8-12M2B MUM -PS 0.99587 0.03724 -0.38028 0.04429 0.17997 0.02025
9-12M2B DAT-CU 0.82189 0.03403 -0.33349 0.05725 0.17542 0.02384
10-12M2B NUM-PK 0.99254 0.02045 -0.74667 0.01791 0 0
11 -12M2B MUM-CU 1.11276 0.05668 -0.62607 0.06221 0.37623 0.02581
12-12M2B MUM -CU 1.24063 0.04485 0.23263 0.02618 0.2069 0.01175
13 -12M2B ALG-PS 0.87039 0.04242 -0.60479 0.07411 0.24596 0.03094
14-12M2B GEO-CU 1.07588 0.0475 -0.53731 0.053 0.24811 0.02488
15-12M2B MEA-PS 1.2911 0.04336 0.35917 0.02007 0.09908 0.00954
16-12M2B ALG-CU 1.30808 0.04722 0.16811 0.02501 0.1734 0.01218
17-12M2B GEO-PS 1.04501 0.04233 0.06249 0.03601 0.19126 0.01607
18-12M2B ALG-PK 1.28474 0.05651 0.5887 0.02388 0.21077 0.01048
19-12M2B NUM-CU 1.23464 0.0533 0.90127 0.02077 0.12741 0.00798
1-2M3 NUM-CU 0.9243 0.0488 -0.74871 0.08205 0.32415 0.03292
2-2M3 NUM-PK 0.74802 0.03835 -1.00432 0.1131 0.28807 0.04331
3-2M3 DAT-CU 0.4541 0.02393 -2.40838 0.20256 0.23125 0.06048
4-2M3 MEA-CU 1.07484 0.03087 -0.00394 0.02274 0.05363 0.01045
5-2M3 GEO-CU 0.64575 0.04069 -0.74695 0.13943 0.31931 0.0439
6-2M3 ALG-PK 1.42528 0.0478 0.31203 0.01867 0.12614 0.00895
7-2M3 GEO-PS 1.03709 0.0367 -0.03512 0.031 0.12964 0.01418
8 -2M3 MUM -CU 1.00965 0.05687 0.75797 0.03161 0.24858 0.012
9-2M3 MEA-PS 1.52737 0.07601 0.27018 0.02708 0.35802 0.01154
10-2M3 ALG-PK 1.29564 0.0258 -0.32567 0.0123 0 0
11-2M3 MEA-PK 0.78811 0.01754 -0.11313 0.01647 0 0
13-2M3 MEA-PK 1.11645 0.02295 0.19065 0.01276 0 0
14-2M3 GEO-PK 1.11033 0.05179 -0.03915 0.04108 0.30152 0.01698
15-2M3 NUM-CU 1.3071 0.05039 0.16072 0.02434 0.17517 0.01187
16-2M3 ALG-PS 1.71041 0.05515 0.43638 0.01421 0.09764 0.00668
17-2M3 ALG-PS 0.85475 0.03878 0.10066 0.04749 0.18707 0.01901
18-2M3 MEA-PS 1.55746 0.07126 0.86763 0.01874 0.16945 0.00758
19-2M3 MEA-PS 1.73092 0.10385 1.00672 0.02147 0.2686 0.00802
1 -2M4 DAT-CU 0.5586 0.0264 -1.45686 0.15091 0.21829 0.05256
2-2M4 NUM-PK 1.36225 0.04727 -0.81677 0.03814 0.19853 0.02174
3 -2M4 MUM -CU 1.0719 0.0561 0.38773 0.03704 0.31409 0.01396
4-2M4 NUM-PK 1.07789 0.04287 0.04027 0.03283 0.16783 0.0151
5 -2M4 GEO-PK 0.85501 0.03016 -1.16239 0.06939 0.14685 0.03458
6-2M4 NUM-CU 1.3016 0.04317 0.59519 0.01652 0.06197 0.00676
7-2M4 ALG-CU 1.62637 0.0731 0.7426 0.01913 0.25316 0.00788-2M4 DAT-FK 1.26523 0.04181 -0.50717 0.03285 0.16329 0.017169-2M4 MEA-CU 1.25752 0.06774 0.55854 0.031 0.37872 0.01117
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10-2M4 ALG-PK 0.84411 0.02072 -1.30959 0.02684 0 0
11-2M4. GEO-CU 1.246 0.02495 -0.20851 0.01223 0 0

NUM-PK 0.53821 0.01469 0.19705 0.02275 0 0.12-2M4
13-2M4 GEO-PS 1.12126 0.02335 -0.33497 0.01398 0 0
14-2M4 ALG-PK 1.18849 0.02528 0.09036 0.01241 if 0
15-2M4 -NUM-PK. 1.13158 0.02457 .. 0.55491 0.01392 0 0
16-2M4 GEO-PK 1.07095 0.02358 0.30392 0.01369 0 07-2M4 NUM-PS 1.07142 0.05001 0.43645 0.03227 0.21714 0.01353
18-2M4 MEA-PS 1.81036 0.09149 0.84193 0.0194 0.262 0.00814
19-2M4 ALG-PS 1.24096 0.05742 0.63267 0.02462 0.1774 - 0.01057

Table 3

POP %

Mathematics, age 9, correlations between percent correct
scores and plausible values

PROF CORR P1 P2 P3 P4 P5

1 61.6 409.8 0.97 0.94 0.94 0.94 0.94 0.94
2 60.2 405.2 0.98 0.94 0.94 0.94 0.94 0.94
3 58.6 400.4 0.98 0.94 0.95 0.94 0.95 0.95
4 68.3 434.6 0.97 0.94 0.94 0.94 0.94 0.94
5 58.9 399 0.98 0.95 0.95 0.95 0.95 0.95
6 64.3 421.1 0.98 0.94 0.95 0.95 0.95 0.94
7 67.6 433.3 0.97 0.93 0.94 0.94 0.94 0.94
8 74.8 462.6 0.97 0.93 0.93 0.94 0.94 0.94
9 59.5 401 0.97 0.94 0.94 0.94 0.95 0.94
10 56.5 390.4 0.97 0.94 0.94 0.94 0.94 0.94
11 54.3 382.9 0.97 0.93 0.93 0.93 0.93 0.93
12 56.4 388.7 0.98 0.94 0.95 0.95 0.95 0.94
13 62.3 411.8 0.98 0.95 0.95 0.95 0.95 0.95
14 64.5 421.8 0.98 0.94 0.94 0.94 0.94 0.94
15 65.1 426.2 0.98 0.95 0.95 0.95 0.95 0.95
16 56.2 381.5 0.97 0.92 0.93 0.93 0.92 0.93
17 65.6 427.2 0.97 0.94 0.94 0.94 0.94 0.94
18 61.1 407 0.97 0.94 0.95 0.94 0.94 0.95
19 68.2 437.4 0.97 0.94 0.95 0.95 0.94 0.94
20 57.3 391 0.98 0.95 0.95 0.95 0.95 0.95

Table 4

POP %

Mathematics, age 13, correlations between percent correct
scores and plausible values

PROF CORR P1 P2 P3 P4 P5

1 63.8 522.1 0.98 0.95 0.95 0.95 0.95 0.95
2 65.9 531.1 0.97 0.95 0.95 0.95 0.95 0.95
3 62.1 517.7 0.97 0.95 0.95 0.95 0.95 0.95
4 80.1 582.3 0.95 0.91 0.91 0.9 0.91 0.92
5 60.6 515 0.97 0.95 0.95 0.96 0.95 0.95
6 33.9 407.4 0.9 0.84 0.85 0.85 0.85 0.85
7 64.4 525.7 0.98 0,95 0.95 0.95 0.96 0.96
8 68.3 539 0.97 0.95 0.95 0.95 0.95 0.95
9 60.5 512.4 0.97 0.95 0.95 0.95 0.95 0.94
10 63.5 523.1 0.97 0.95 0.95 0.95 0.95 0.95
11 64.7 523.4 0.97 0.95 0.95 0.95 0.95 0.95
12 40.7 442.3 0.94 0.9 0.9 0.91 0.9 0.91
13 73.6 557.3 0.96 0.94 0.94 0.94 0.94 0.94-14 57.7 503.1 0.97 0.94 0.94 0.94 0.94 0.94
15 63.3 521.3 0.97 0.94 0.94 0.95 0.95 0.94
16 30.8 401.3 0.84 0.74 0.74 0.73 0.73 0.74
17 57.5 501.6 0.97 0.94 0.95 0.94 0.94 0.95



18 60.9 512.6 0.97 0.94 0.95 0.95 0.95 0.95
19 59 508.7 0.97 0.94 0.94 0.94 0.94 0.94
20 59.9 511.9 0.97 0.95 .0.95 -- 0.95 0.95 0.95
21 57.8 505.1 0.97 0.95 0.94 0.N 0.94 0.95
23 53.9 491.7 0.97 0.93 '0.94. 0.93 0.93 0.94
24 50.2 ..478.1 0.96 0.93 0.93 0.93 0.93 0.93
25 65.1 531.4 0.97 0.95 0.95 0.95 0.95 0.95
26- 68.9 537.8 0.98 -0.94 0.95 0.95 0.95 0.95
27 36.7 423.2 0.93 0.88 0.88 0.88 0.88 0.88
28 6^. 517.5 0.98 0.95 0.95 0.94 0.95 0.95
29 67.7 534.4 0.97 0.94 0.94 0.93 0.95 0.95
30 60.7 515.8 0.98 0.95 0.96 0.95 0.96 0.95
31 57.6 504.9 0.98 0.95 0.95 0.95 0.95 0.95
32 70.3 544.7 0.97 0.95 0.95 0.95 0.95 0.95
33 55.7 492.6 0.97 0.93 0.93 0.93 0.93 0.93
34 74.2 555 0.97 0.94 0.94 0.94 0.93 0.94
35 72.7 561.8 0.95 0.93 0.93 0.93 0.94 0.93
36 54.6 491.4 0.97 0.95 0.95 0.94 0.95 0.94

Table S Science, age 9, correlations between percent correct scores
and plausible values

POP % PROF CORR P1 P2 P3 P4 P5

1 65.4 436.4 0.96 0.91 0.91 0.91 0.9 0.91
2 62.2 417.3 0.96 0.9 0.9 0.91 0.9 0.91
3 62.5 418.8 0.97 0.91 0.92 0.92 0.91 0.92
4 62 418.8 0.95 0.89 0.9 0.89 0.89 0.89
5 54.8 379.5 0.96 0.91 0.91 0.91 0.91 0.91
6 60.9 411.5 0.96 0.91 0.91 0.91 0.91 0.92
7 66.4 440.9 0.96 0.91 0.91 0.91 0.91 0.91
8 68.4 441.9 0.96 0.9 0.9 0.9 0.91 0.91
9 60.8 409.3 0.96 0.9 0.91 0.91 0.91 0.91
10 61.6 414.2 0.96 0.91 0.91 0.91 0.91 0.91
11 55.6 381.4 0.95 0.88 0.88 0.88 0.88 0.88
12 54 373.5 0.95 0.89 0.88 0.88 0.89 0.89
13 62.3 419 0.96 0.91 0.92 0.91 0.91 0.91
14 62.4 417.3 0.96 0.89 0.89 0.9 0.89 0.9
15 61 413.2 0.96 0.9 0.91 0.91 0.91 0.9
16 57.9 383.1 0.94 0.86 0.86 0.87-- 0.86 0.86
17 61.2 414.3 0.96 0.9 0.9 0.9 0.91 0.9
18 61 410.4 0.96 0.91 0.91 0.91 0.91 0.91
19 66.2 437.4 0.97 0.92 0.92 0.92 0.92 0.92
20 63.6 426.4 0.97 0.93 0.93 0.93 0.93 0.93

Table 6

POP NB

Mathematics, age 9, correlations between percent correct
scores and plausible values

% PROF CORR P1 P2 P3 P4 P5

1 1460 73.9 539 0.96 0.92 0.92 0.92 0.92 C 92
2 1617 72.5 533.2 0.96 0.91 0.92 0.91 0.92 0.91
3 4980 68.9 517.3 0.96 0.92 0.92 0.92 0.92 0.92
4 1775 66.7 510 0.97 0.92 0.93 0.92 0.93 0.92
5 929 68 516.1 0.97 0.92 0.93 0.94 0.94 0.93

1505 48.3 407 0.93 0.86 0.86 0.86 0.87 0.87.6
7 1787 68.4 516 0.97 0.94 0.93 0.93 0.94 0.93
8 1623 73.3 538 0.96 0.93 0.93 0.93 0.93 0.939 1657 63.1 492.6 0.97 0,93 0.93 0.93 0.93 0.93
10 1584 69.4 518.2 0.97 0.93 0.93 0.93 0.93 0.93
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11 1485 70.6 .521 0.97 0.92 0.93' 0.93 0.93. 0.93
12 1588 57.5 454.9 0.96 0.92 0.92 0.91 0.92 0.91
13 : .1635 -- 77.5 556. 0.97 0.92 0.92 0.92 0.93 0.93 .

14 1672 68.7 514.6 0.97 0.93 0.93 0.93 0.93 0.93 -.
15 666 66.5 506.2 0.97 0.91 0.92 . 0.92 0.93 0.92
16 1604 66.3 504.6 0.97 0.92 0.93 0.92 0.92 0.93
17 1656 63.2 493 0.96 0.92 0.92 0.92 0.92. 0.92
18 1566 66.7 -504.7 0.97 0.93 0.93 0.93 0.93 0.93
19 1542 69.1 516.3 0.97 0.93 0.93 : 0.93 0.93 0.93
20 1609 66.9 509.2 0.96 0.92 0.92 0.92 0.92 0.92
21 1434 60.4 479.7 0.96 0.91 0.91 0.91 0.92 0.91
22 1520 63.7 490 0.97 0.93 0.93 0.92 0.92 0.92
23 1416 69.5 519.6 0.97 0.92 0.93 0.92 0.92 0.92
24 1579 71.3 528.5 0.96 0.92 0.92 0.92 0.92 0.92
25 1469 52.5 434.5 0.95 0.89 0.9 0.9 0.89 0.89
26 1694 70.6 .521.7 0.97 0.92 0.93 0.92 0.93 0.93
27 223 65 500.7 0.96 0.92 0.9 0.9 0.91 0.9
28 1584 67.4 513.6 0.97 0.93 0.94 0.93 0.93 0.93
29 1598 70.4 521.4 0.97 0.93 0.92 0.92 0.93 0.93
30 1839 70.9 525.1 0.97 0.92 0.92 0.92 0.92 0.92
31 1609 68.2 508.1 0.96 0.92 0.92 0.91 0.91 0.92
32 3653 75.6 549.5 0.96 0.91 0.91 0.91 0.91 0.91
33 1786 75.8 548.6 0.97 0.94 0.93 0.93 0.94 0.94
34 1404 67 504.1 0.97 0.93 0.93 0.93 0.93 0.93



Table 7 Mathematics, age 9 and 13, mean proficiency scores and
percentile by population

MEAN SE Cl C10 C20 C30* C40 MED C60 C70 .C80 . C90 C100

381.51 1.93* 191.95 302.95 329.34 351.09 368.26 386.74 399.66 413.62 431.31 453.7 519.27
383.06 2.15* 175.97 298.51 329.01 353.24 372.77. 388.7 402.94 417.25 435.31 457.95 522.98
388.03 3.92* 170.03 291.46 323.93 350.9 372.47 393.65 411.75 429.11 450.92 477.2 553.19
390.39 2.66* 164.18 296.37 332.78 358.03 378.49 397.15 412.85 429.43 448.72 474.92 547.83
391.26 4.38* 164.71 271.8 321.93 351.36 377.71 399.38 416.93 435.41 459.57 486.67 578.95
399.46 3.13* 171.11 289.46 337.99 366.86 387.93 408.49 423.98 442.74 463.34 489.78 585.16
400.42 7.8* 183.19 298.95 337.59 362.18 382.33 402.48 421.16 439.54 464.51 500.76 635.98
400.99 2.02* 152.84 299.55 346.36 371.24 391.16 409.16 424.45 438.92 457.73 484.39 599.54
401.04 1.63 258.91 342.78 363.85 378.64 392.02 403.56 412.59 426.41 438.26 455.65 515.54
407.34 3.9' 162.96 300.15 343.89 372.9 395.58 413.56 431.08 450.05 469.37 497.44 595.34
407.46 2.93 220.32 314.19 344.3 368.36 385.39 403.4 425.48 449.96 471.44 502.89 589.64
409.65 2.66* 149.78 315.67 356.93 382.11 398.72 414.26 430.81 447.26 464.84 494.61 594.11
411.81 3.19* 173.85 315.81 355.87 382 401.35 417.68 432.41 449.51 469.16 497.48 605.63
421.16 2.81* 187.59 326.3 362.07 385.5 407.12 424.45 443.01 459.63 481.73 505.94 634. 8
421.74 2.77* 192.68 336.15 373.65 395.33 413.02 427.06 441.69 454.44 471.01 494.62 570..48
424.11 3.65 224.77 333.53 364.4 383.24 403.91 419.4 439.74 458.89 483 518.93 594.88
426.12 3.34* 183.38 339.3 371.61 393.54 412.53 428.24 442.83 462.76 483.35 515.21 618.77
427.54 4.43* 198.88 328.67 364.13 392.39 411.34 431.63 449.19 467.48 487.96 518.17 633.28
433.29 3.59* 204.37 345.26 380.6 401.65 418.79 434.99 449.1 466.1 486.56 523.79 628.13
434.38 2.63* 188.21 334.82 370.79 396.93 419.31 438.86 455.42 475.13 501.91 526.3 648.28
437.23 3.03* 191.05 342.53 378.26 403.58 424.66 441.8 459.01 473.95 496.25 527.41 616.47
442.39 3.51 250.4 349.94 382.51 408.77 426.25 443.87 462.35 479.27 501.23 527.64 627.97
462.65 2.42* 193.39 373.09 407.46 433.4 452.04 466.28 481.15 499.76 518.23 546.32 684.15
477.27 2.85 270.53 400.39 432.52 451.07 468.31 481.81 496.42 510.26 526.58 548.15 670.91
491.62 1.97 284.05 420.75 452.84 470.07 483.75 495.44 506.22 518.88 534.03 549.89 624.32
491.85 3.89 277.32 404.8 435.05 457.15 475.91 492.7 508.54 526.45 545.82 572.57 685.99
492.78 2.5 292.07 426.38 450.49 466.75 480.74 494.36 508.38 521.49 535.65 555.64 636.41
501.61 1.58 294.14 428.66 458.93 477.05 490.82 504.02 516.2 530.37 547.28 570.69 660.67
503.17 2.53 269.1 428.57 458.99 478.35 492.39 507.16 521.15 534.26 550.17 572.58 649.6
504.75 2.33 293.34 425.05 454.79 474.83 493.06 508.66 522.82 536.37 551.51 575.69 650.8
505.41 2.69 305.02 436.54 459.63 475.85 491.7 505.45 518.06 533.75 550.18 575.07 665.12
508.60 2.02 257.4 436.49 465.37 485.11 500.75 512.49 524.86 537.97 553.37 573.86 652.7
511.72 1.67 283.82 441.21 467.56 484.24 500.83 513.54 525.32 539.79 556.74 580.32 678.45512.36 2.79 237.55 430.4 460.45 483.36 501.75 518.54 531.16 547.12 564.78 586.85 694.78
512.60 1.24 283.65 435.42 468.04 488.96 503.51 518.04 531.36 544.17 559.84 579.22 647.03
514.67 7.03 281.3 428.78 466.16 484.02 499.37 515.81 531.41 548.28 570.28 599.71 708.92
515.51 2.79 305.98 437.54 466.21 487.24 503.38 517.69 532.91 549.25 565.47 587.34 672.02517.44 2.3 260.66 446.55 475.24 494.08 507.92 52-0.07 532.79 545.74 561.52 583.45 672.68
521.27 2.03 296.6 461.58 485.39 499.89 511.7 522.03 533.6 544.67 559.6 581.12 640.71522.03 2.31 288.29 450.34 476.13 495.41 509.69 523.07 536.03 550.5 567.34 590.99 685.49522.99 2.48 303.41 447.82 477.19 499.03 513.81 527.55 541.21 555.61 569.85 591.07 688.79
523.11 2.67 288.95 443.71 471.78 495.36 513.51 529.59 543.2 556.84 571.71 592.7 671.52525.66 2.5 288.39 445.59 475.44 496.44 513.3 529.01 544.99 558.96 576.56 598.29 675.2
530.96 3.34 277.82 459.16 486.32 504.37 518.64 530.33 543.5 557.22 575.16 602.92 685.15
531.15 2.17 311.03 461.64 487.58 503.2 516.43 529.79 542.08 557.72 574.02 601.26 680.61534.41 3.32 369.15 471.85 496.64 510.36 521.73 531.31 545.97 557.95 568.25 582.47 623.23
537.72 2.28 332.12 474.66 499.51 515.5 527.35 538.74 550.82 562.16 577.75 598.14 682.6538.88 2.68 296.35 451.82 485.63 507.75 527.54 542.65 557.38 572.17 593.72 619.7 725.04544.63 2.94 299.35 467.72 496.51 518.11 536.2 548.69 562.98 577.16 592.08 613.33 705.32552.78 3.73 339.55 487.93 514.17 531 545.01 556.64 569.29 582.76 596.66 616.93 712.96557.19 2.58 265.81 458.05 497.84 523.48 542.78 561.19 579.1 596.79 617.95 646 746.78561.82 2.79 229.5 437.83 481.47 510.77 540.16 567.57 594.4 617.13 641.98 678.49 815.19
582.47 4.18 367.86 510.76 536.91 553.67 566.83 580.7 595.57 610.22 627.42 653.95 747.57
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Table 8 Science, age 9 and 13, mean proficiency scores and
percentile by population

MEAN SE C 1 C10 C20 C30 C40 MED C60 C70 C80 C90 C100

374.41 4.46* 140.22 269.09 309.39 332.55 354.34 374.84 394.09 415.79 441.05 474.02 572.64
382.05 4.07* 119.03 249.51 301.91 338.6 364.42 389.76 413.1 436.63 462.23 493.67 605.63
383.63 2.63* 130.02 285.61 322.64 348.96 366.65 381.73 400.1 423.11 444.99 475.82 587.61
385.25 2.56* 169.31 291.91 327.2 353.9 370.6 387.54 404.5 424.69 447.07 473.1 568.35
412.25 4.34 169.13 301.78 337.98 365.65 387.62 410.12 432.34 458.19 487.5 522.02 675.29
415.57 2.32* 134.5 283.85 348.39 378.19 407.24 428.44 446.81 463.66 486.12 516.15 616.07
417.15 4.25* 156.16 302.1 344.6 373.33 398.52 423.03 444.48 466.87 491.4 525.96 643.69
418.08 3.74* 132.6 305.04 343.88 375.01 396.09 416.61 440.74 464.69 492.68 526.54 625.6
420.43 3.62* 160.61 308.9 356.01 379.73 405.72 423.13 445.36 465.64 489.69 517.03 605.66
421.35 3.25* 154.75 302.13 351.81 381.26 407.34 431.77 450.7 469.71 492.94 523.77 630.09
421.89 6.05* 161.45 328.85 360.49 382.74 400.44 419.75 437.82 456.49 483.08 517.31 635.89
424.57 3* 149.72 331.31 362.64 389.48 409.28 429.94 446.53 465.67 485.73 513.73 640.56
425.91 5.'69 152 295.71 348.07 384.03 410.09 433.88 454.51 479.24 502.48 532.5 641.36
426.43 2.8*7 156.35 333.34 369.66 394.25 412.85 429.47 447.85 464.79 486.07 511.89 598.19
426.62 3.97* 163.91 308.2 354.54 386.53 409 431.82 453.55 472.8 498.27 533.26 625.27
435.63 5.45* 141.93 295.25 354.71 393.63 421.04 444.18 468.5 489.75 517.14 550.88 683.02
445.52 3.4 203.01 326.05 367.69 396.46 422.52 444.8 467.79 486.96 513.79 550.91 668.8
446.32 3.5* 179.23 343.37 384.75 414.54 433.93 454.16 471.67 488.2 508.12 535.62 633.81
447.77- 3.21* 160.14 331.5 375.91 405.79 427.26 449.58 470.95 496.56 520.78 561.39 664.22
451.82 4.96* 175.33 346.21 383.84 405.5 429.99 452.2 474.51 495.44 519.71 552.97 651.2
453.04 2.79* 207.95 360.33 395.49 416.28 434.59 451.87 470.23 490.14 513.77 546.85 645
467.93 3.89 164.65 351.34 394.72 427.97 454.39 475.34 495.74 517.2 538.97 566.39 664.19
496.29 2.64 274.93 407.55 438.43 461.01 477.17 494.93 514.48 534.28 556.81 584.4 685.65
507.53 4.04 227.89 402.27 444.48 469.11 490.64 510.4 528.69 551.62 577.12 606.24 759.49
511.31 3.01 227.36 402.75 446.06 472.41 494.09 512.67 532.69 555.79 578.95 610.72 723.8
511.54 1.73 232.71 415.63 453.62 475.82 494.96 515.78 532.16 549.74 570.49 600.81 709.82
520.45 4 292.96 451.86 470.2 487.14 500.62 514.82 530.5 545.79 566.94 597.45 663.03
524.8 5.21 182.23 423.9 466.56 489.91 509.14 527.06 544.06 561.81 584.13 617.59 727.17
524.87 2.31 268.86 429.56 466.29 489.56 508.64 525.39 544.35 562.52 583.41 618.81 706.96
524.91 1.77 240.86 430.43 466.4 491.41 511.46 529.24 546.89 564.25 585.48 613.99 736.33
526.74 3.37 296.63 439.23 470.2 492.22 510.01 528.05 544.28 560.67 581.37 610.49 682.67
529.33 2.77 247.75 444.3 473.12 495.02 513.01 528.58 545.25 562.67 582.22 613.05 712.85
530.36 3.32 275.43 443.49 478.33 499.91 516 530.39 544.92 560.48 581.71 611.21 712.81
531.12 5.6 248.69 426.94 466.17 493.33 514.52 533.35 551.21 569.98 595.36 627.5 747.72
535.17 3.36 252.46 430.19 472.87 497.86 520.6 538.27 558.23 575.81 599.29 631.11 749.64
536.55 3.15 260.02 434.92 472.69 504.21 522.72 539.49 558.41 576.14 599.22 631.57 762.48
537.99 2.99 289.44 430.79 474.59 500.24 520.98 540.1 558.85 580.02 602.23 630.95 735.12
538.13 2.27 300.91 443.63 475.63 501.74 522.25 540,03 558.68 578.4 599.5 628.81 735.93
538.22 6 226.85 430.95 472.43 495.8 519.61 541.22 559.49 579.85 603.79 634.08 719.43
540.66 3.37 274.45 439.41 475.47 502.35 523.83 542.3 562.99 583.1 601.99 634.52 745.32
542.13 2.58 282.22 455.54 486.13 508.33 525.46 542.32 558.08 575 597.36 630.15 735.36
543.85 2.95 276.07 451.33 484.28 508.7 527.63 544.74 563 582.1 603.4 632.1 729.98
544.16 2.57 254.09 453.16 483.05 506.37 525.41 546.22 562.02 581.34 605.04 633.9 728.35
544.59 2.65 264.51 457.77 489.06 510.36 529.63 546.95 561.33 580.4 602.53 630.69 730.26
548.17 4.2 274.19 457.57 490.27 514.61 535.66 553.57 570.09 588.6 605.15 632.38 700.41
552.16 2.57 301.09 470.3 498.57 .517.45 535.25 550.76 566.55 584.71 608.98 633.77 724.21
557.58 2.26 288.7 473.88 507.4 528.55 543.89 561.11 575.16 590.22 607.93 633.74 730.51
563.13 2.94 297.35 461.29 496.45 520.99 540.99 564.78 586.57 606.5 628.55 664.21 779.82
564.36 2.14 242.1 479.9 509.88 531.42 549.61 566.29 583.61 599.31 619.45 646.86 816.52
573.87 4.26 309.41 489.19 522.52 543.83 560.47 578.03 593.31 609.63 632.06 663.02 785.75575.49 2.23 251.2 455.41 500.73 537.77 563.82 585.28 606.42 628.49 650.36 682.75 786.11583.82 2.72 266.76 487.23 524.28 550.35 571.04 589.38 605.71 622.55 645.11 675.76 771.89
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Table 9 Mathematics, equated slope parameters for common items

9-year-olds 13-1year-olds .

Item17 0.76897 0.73187 Item20.
Item18 0.70382 0.83575 Item21
Item19 0.77018 0.66709 Item22
Item20 0.86174 0.59672 Item23
Item21 0.71834 0.56451 Item24
Item22 0.90387 0.67999 , Item25
Item23 0.87985 1.03708 Item26
Item24 1.1638 0.99587 Item27
Item25 0.79035 0.82189 Item28
Item26 0.95702 0.99254 Item29
Item27 0.88049 1.11276 Item30
Item28 1.15055 1.24063 Item31
Item29 0.95931 0.87039 Item32
Item30 0.95709 1.07588 Item33

Table 10 Mathematics, equated treshold parameters for common items

9-year-olds 13-year-olds

Item17 -1.36162 -1.44386 Item20
Item18 -1.81124 -1.66592 Item21
Item19 -0.47919 -0.14352 Item22
Item20 -0.24729 -0.41038 Item23
Item21 -0.76059 -0.56463 Item24
Item22 -1.33062 -1.45374 Item25
Item23 -0.93547 -0.58454 Item26
Item24 -0.16388 -0.38028 Item27
Item25 -0.45516 -0.33349 Item28
Item26 -0.84136 -0.74667 Item29
Item27 0.43431 -0.62607 Item30
Item28 -0.05627 0.23263 Item31
Item29 -0.4826 -0.60479 Item32
Item30 -0.23453 -0.53731 Item33

Table 11 Mathematics, equated guessing parameters for common items

9-year-olds 13-year-olds

Item17 0.23484 0.20564 Item20
Item18 0.25686 0.18289 Item21
Item19 0.27117 0.3104 Item22
Item20 0.28042 0.18696 Item23
Item21 0.27469 0.20861 Item24
Item22 0.16562 0.18137 Item25
Item23 0.19152 0.30164 Item26
Item24 0.30381 0.17997 Item27
Item25 0.17341 0.17542 Item28
Item26 0 0 Item29
Item27. 0.32057 0.37623 Itern30
Item28 0.27199 0.2069 Item31
Item29 0.1609 0.24596 Item32
Item30 0.23691 0.24811 Item33



Table 12 Science, equated slope parameters for common items

9-year-olds 13-year-olds

Item16 0.16192 0.3003 Item16
Item17 0.68524 0.74228 -Item 11
Item18 0.75434 0.76781 ' Item18.
Item19 0.72529 0.66119 Item19
Item20 0.55497 1.03132 Item20
Item21 0.80861 0.71951 Item21
Item22 0.53808 0.74359 Item22
Item23 0.60036 0.6129 Item23
Item24 0.48032 0.64799 Item24
Item25 0.58275 0.95714 Item25
Item26 0.76455 0.37457 Item26
Item27 0.29778 0.7748 Item27
Item28 0.74936 0.86323 Item28
Item29 0.94014 1.32178 Item29

Table 13 Science, equated treshold parameters for common items

9-year-olds 13-year-olds

Item16 -2.64404 -1.36454 Item16
Item17 -0.79376 -0.81066 Item17
Item18 -1.1249 -1.00337 Item18
Item19 -1.29098 -1.4272 Item19
Item20 -1.05326 -0.21995 Item20
Item21 -0.13286 -0.38295 Item21
Item22 -1.35272 -1.19196 Item22
Item23 -1.48899 -1.17802 Item23
Item24 -2.36079 -2.00635 Item24
Item25 -0.61151 -0.47411 Item25
Item26 -1.00494 0.17538 Item26
Item27 -0.78997 -0.14441 Item27
Item28 -0.63007 -0.47186 Item28
Item29 -0.25141 -0.5232 Item29

Table 14 Science, equated guessing parameters for common items

Item16
Item17
Item18
Item19
Item20
Item21
Item22
Item23
Item24
Item25
Item26
Item27
Item28
Item29

9-year-olds

0.29306
0.29953
0.30201
0.21697
0.36796
0.3591
0.22984
0.17459
0.31988
0.27565
0.18804
0.27049
0.22244
0.27053

13-year-olds

0.34093
0.34522
0.26712
0.26014
0.48258
0.37624
0.31043
0.23425
0.27574
0.40488
0.30189
0.41344
0.255
0.24219

Item16
Item17
Item18
Item19
Item20
Item21
Item22
Item23
Item24
Item25
Item26
Item27
Item28
Item29
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Figure 1 Reference population item parameter estimates compared to
population x item parameter estimates
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Figure 2. Reference population item parameter estimates compared topopulation 'Y item parameter estimates -
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Reference population item parameter estimates compared to
population z item parameter estimates
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Figure .4 Science, age 13, items 1 and 2, superimposed ICCs estimated
from each individual population (solid lines) and the reference
population (dashed line)
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--------7 ays oo 6 Ssars./J%i .1.,60,7
from each individual population (solid lines) and the reference
population (dashed line)
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Figure Science, age 13, items 5 and 6, superimposed ICCs estimated
from each individual population (solid lines) and the reference
population (dashed line)



Figure 7,7
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Figure .8 Science, ages 9 and 13, superimposed regression !lines
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Figure 9 _Mathematics, ages 9 and 13, superimposed regression lines for
equated population item parameter estimates
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Figure .10 Science, ages 9 and 13, superimposed regression lines
for equated population item parameter estimates
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Figure 11 Mathematics, equated slope parameters for the common items.
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Figure ":12 Mathematics, equated threshold parameters for the common
items.
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- Figure 13
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Mathematics, equated guessing parameters for the common
items.
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Figure 14 Science, equated slope parameters for the common items.
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Figure 15.
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Figure '16 Science, equated guessing parameters for the common items.
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